Class MultiheadAttentionImpl¶
Defined in File activation.h
Page Contents
Inheritance Relationships¶
Base Type¶
public torch::nn::Cloneable< MultiheadAttentionImpl >
(Template Class Cloneable)
Class Documentation¶
-
class MultiheadAttentionImpl : public torch::nn::Cloneable<MultiheadAttentionImpl>¶
Applies the MultiheadAttention function element-wise.
See https://pytorch.org/docs/main/nn.html#torch.nn.MultiheadAttention to learn about the exact behavior of this module.
See the documentation for
torch::nn::MultiheadAttentionOptions
class to learn what constructor arguments are supported for this module.Example:
MultiheadAttention model(MultiheadAttentionOptions(20, 10).bias(false));
Public Functions
-
inline MultiheadAttentionImpl(int64_t embed_dim, int64_t num_heads)¶
-
explicit MultiheadAttentionImpl(const MultiheadAttentionOptions &options_)¶
-
std::tuple<Tensor, Tensor> forward(const Tensor &query, const Tensor &key, const Tensor &value, const Tensor &key_padding_mask = {}, bool need_weights = true, const Tensor &attn_mask = {}, bool average_attn_weights = true)¶
-
virtual void reset() override¶
reset()
must perform initialization of all members with reference semantics, most importantly parameters, buffers and submodules.
-
void _reset_parameters()¶
Public Members
-
MultiheadAttentionOptions options¶
The options with which this
Module
was constructed.
-
bool _qkv_same_embed_dim¶
-
Tensor in_proj_weight¶
-
Tensor in_proj_bias¶
-
Tensor bias_k¶
-
Tensor bias_v¶
-
Tensor q_proj_weight¶
-
Tensor k_proj_weight¶
-
Tensor v_proj_weight¶
-
int64_t head_dim¶
Protected Functions
-
inline virtual bool _forward_has_default_args() override¶
The following three functions allow a module with default arguments in its forward method to be used in a Sequential module.
You should NEVER override these functions manually. Instead, you should use the
FORWARD_HAS_DEFAULT_ARGS
macro.
-
inline virtual unsigned int _forward_num_required_args() override¶
Friends
- friend struct torch::nn::AnyModuleHolder
-
inline MultiheadAttentionImpl(int64_t embed_dim, int64_t num_heads)¶