Debug Backend Delegate¶
We provide a list of util functions to give users insights on what happened to the graph modules during the to_backend()
stage.
Get delegation summary¶
The get_delegation_info()
method provides a summary of what happened to the model after the to_backend()
call:
from executorch.exir.backend.utils import get_delegation_info
from tabulate import tabulate
# ... After call to to_backend(), but before to_executorch()
graph_module = edge_manager.exported_program().graph_module
delegation_info = get_delegation_info(graph_module)
print(delegation_info.get_summary())
df = delegation_info.get_operator_delegation_dataframe()
print(tabulate(df, headers="keys", tablefmt="fancy_grid"))
Example printout:
Total delegated subgraphs: 86
Number of delegated nodes: 473
Number of non-delegated nodes: 430
op_type |
occurrences_in_delegated_graphs |
occurrences_in_non_delegated_graphs |
|
---|---|---|---|
0 |
aten__softmax_default |
12 |
0 |
1 |
aten_add_tensor |
37 |
0 |
2 |
aten_addmm_default |
48 |
0 |
3 |
aten_arange_start_step |
0 |
25 |
… |
|||
23 |
aten_view_copy_default |
170 |
48 |
… |
|||
26 |
Total |
473 |
430 |
From the table, the operator aten_view_copy_default
appears 170 times in delegate graphs and 48 times in non-delegated graphs. Users can use information like this to debug.
Visualize delegated graph¶
To see a more detailed view, use the print_delegated_graph()
method to display a printout of the whole graph:
from executorch.exir.backend.utils import print_delegated_graph
graph_module = edge_manager.exported_program().graph_module
print(print_delegated_graph(graph_module))
It will print the whole model as well as the subgraph consumed by the backend. The generic debug function provided by fx like print_tabular()
or print_readable()
will only show call_delegate
but hide the the subgraph consumes by the backend, while this function exposes the contents inside the subgraph.
In the example printout below, observe that embedding
and add
operators are delegated to XNNPACK
while the sub
operator is not.
%aten_unsqueeze_copy_default_22 : [num_users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.unsqueeze_copy.default](args = (%aten_arange_start_step_23, -2), kwargs = {})
%aten_unsqueeze_copy_default_23 : [num_users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.unsqueeze_copy.default](args = (%aten_arange_start_step_24, -1), kwargs = {})
%lowered_module_0 : [num_users=1] = get_attr[target=lowered_module_0]
backend_id: XnnpackBackend
lowered graph():
%aten_embedding_default : [num_users=1] = placeholder[target=aten_embedding_default]
%aten_embedding_default_1 : [num_users=1] = placeholder[target=aten_embedding_default_1]
%aten_add_tensor : [num_users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.add.Tensor](args = (%aten_embedding_default, %aten_embedding_default_1), kwargs = {})
return (aten_add_tensor,)
%executorch_call_delegate : [num_users=1] = call_function[target=torch.ops.higher_order.executorch_call_delegate](args = (%lowered_module_0, %aten_embedding_default, %aten_embedding_default_1), kwargs = {})
%aten_sub_tensor : [num_users=1] = call_function[target=executorch.exir.dialects.edge._ops.aten.sub.Tensor](args = (%aten_unsqueeze_copy_default, %aten_unsqueeze_copy_default_1), kwargs = {})