Shortcuts

Source code for torch.distributed.tensor.parallel.fsdp

import copy
import warnings
from typing import cast, List, NamedTuple, Optional, Tuple

import torch
import torch.distributed as dist

import torch.distributed._shard.sharding_spec as shard_spec
import torch.distributed.distributed_c10d as c10d

from torch.distributed.fsdp._common_utils import _set_fsdp_flattened
from torch.distributed._shard.sharded_tensor import (
    Shard,
    ShardedTensor,
    ShardedTensorMetadata,
    TensorProperties,
)

from torch.distributed._shard.sharding_spec import ShardMetadata
from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ChunkShardingSpec

from torch.distributed._tensor import (
    DeviceMesh,
    DTensor as DistributedTensor,
    Shard as DShard,
)
from torch.distributed._tensor.placement_types import Placement

from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor

from torch.distributed.remote_device import _remote_device

__all__ = ["enable_2d_with_fsdp"]


[docs]def enable_2d_with_fsdp() -> bool: """ The API registers the extension which is needed for Tensor Parallelism (TP) to work with FullyShardedDataParallel (FSDP). We first parallelize parameters within one module or sub_modules based on a parallelize_plan and will let FSDP reshard the local tensor of distributed parameter which is essentially a DTensor. Return: A `bool` indicated whether extension registration succeeds or not. """ try: from torch.distributed.fsdp._fsdp_extensions import ( _set_fsdp_extensions, FSDPExtensions, ) class DTensorExtensions(FSDPExtensions): def pre_flatten_transform( self, tensor: torch.Tensor, ) -> Tuple[torch.Tensor, Optional[_STShardingInfo]]: return _flatten_tensor(tensor) def post_unflatten_transform( self, tensor: torch.Tensor, param_extension: _STShardingInfo ) -> torch.Tensor: return _unflatten_tensor(tensor, param_extension) def chunk_tensor( self, tensor: torch.Tensor, rank: int, world_size: int, num_devices_per_node: int, pg: dist.ProcessGroup, ) -> torch.Tensor: return _chunk_tensor(tensor, rank, world_size, num_devices_per_node, pg) def pre_load_state_dict_transform( self, tensor: torch.Tensor, ) -> Tuple[torch.Tensor, List[Shard]]: return _pre_load_state_dict(tensor) _set_fsdp_extensions(DTensorExtensions()) return True except BaseException as e: warnings.warn( "PyTorch doesn't have TensorFlattener extension point available" "2D parallelism won't work with FSDP" f"exception: {e}" ) return False
class _STShardingInfo(NamedTuple): """:class:`ShardedTensor` sharding information.""" sharding_spec: Optional[shard_spec.ShardingSpec] global_size: Optional[torch.Size] process_group: Optional[c10d.ProcessGroup] device_mesh: Optional[DeviceMesh] placements: Optional[List[Placement]] def _get_box(tensor: DistributedTensor) -> Tuple[torch.Size, torch.Size]: device_mesh = tensor.device_mesh assert device_mesh.ndim == 1, "Only 1D DeviceMeshes currently handled" placement = tensor.placements[0] offsets = [0] * len(tensor.size()) num_chunks = device_mesh.size(dim=0) if tensor.placements[0].is_shard(): shard_dim = cast(DShard, placement).dim chunk_size = tensor.size(shard_dim) // num_chunks offsets[shard_dim] = chunk_size return (torch.Size(offsets), tensor._local_tensor.size()) def _get_box_for(tensor: DistributedTensor, idx: int) -> Tuple[torch.Size, torch.Size]: offsets, size = _get_box(tensor) return (torch.Size([val * idx for val in offsets]), size) def _get_local_box(tensor: DistributedTensor) -> Tuple[torch.Size, torch.Size]: device_mesh = tensor.device_mesh coord = device_mesh.get_coordinate() assert coord is not None return _get_box_for(tensor, coord[0]) def _create_shard_md_from_dt(dt: DistributedTensor, current_rank: int) -> ShardMetadata: mesh = dt.device_mesh assert mesh.ndim == 1, "Only 1D DeviceMeshes currently handled" offsets, sizes = _get_local_box(dt) return ShardMetadata( shard_offsets=list(offsets), shard_sizes=list(sizes), placement=f"rank:{current_rank}/{dt._local_tensor.device}", ) def _create_sharded_tensor_md_from_dt( dt: DistributedTensor, dt_pg: c10d.ProcessGroup ) -> ShardedTensorMetadata: # This is where it gets tricky, we have to produce a ShardedTensor that has full coverage # and yet has only one valid shard for the current rank. shards_md = [] my_rank = dist.get_rank(dt_pg) scapegoat_rank = 0 if my_rank > 0 else 1 if dt.placements[0].is_shard(): shard_count = dt_pg.size() else: shard_count = 1 for i in range(shard_count): offsets, sizes = _get_box_for(dt, i) shards_md.append( ShardMetadata( shard_offsets=list(offsets), shard_sizes=list(sizes), placement=( f"rank:{scapegoat_rank if i > 0 else my_rank}/{dt._local_tensor.device}" ), ) ) return ShardedTensorMetadata( shards_metadata=shards_md, size=dt.size(), tensor_properties=TensorProperties( dtype=dt.dtype, layout=dt.layout, requires_grad=dt.requires_grad, # ignore memory_format and pin_memory as those are not supported by DT ), ) def _get_dt_pg(dt: DistributedTensor) -> c10d.ProcessGroup: mesh = dt.device_mesh assert mesh.ndim == 1, "Only 1D DeviceMeshes currently handled" return mesh.get_dim_groups()[0] def _rewrite_spec_if_needed( spec: shard_spec.ShardingSpec, tensor: torch.Tensor, rank: int ) -> shard_spec.ShardingSpec: """ Rewrite ``spec`` to match the device of ``tensor``. FSDP.sharded_optim_state_dict sneakly ships optimizer state to CPU so if the original ShardingSpec produces CUDA metadata, ST construction bombs. """ if not isinstance(spec, ChunkShardingSpec): return spec # let's see if we need rewrite = False for p in spec.placements: p = cast(_remote_device, p) if p.rank() == rank and p.device() != tensor.device: rewrite = True break if rewrite: spec = copy.deepcopy(spec) for i, placement in enumerate(spec.placements): placement = cast(_remote_device, placement) if placement.rank() == rank and placement.device() != tensor.device: spec.placements[i] = _remote_device(f"rank:{rank}/{tensor.device}") return spec def _flatten_tensor( tensor: torch.Tensor, ) -> Tuple[torch.Tensor, Optional[_STShardingInfo]]: if type(tensor) is ShardedTensor: return tensor.local_tensor(), _STShardingInfo( tensor.sharding_spec(), tensor.size(), tensor._process_group, None, None, ) elif type(tensor) is DistributedTensor: tensor._local_tensor.requires_grad_() return tensor._local_tensor, _STShardingInfo( None, None, None, tensor.device_mesh, list(tensor.placements), ) return tensor, None def _unflatten_tensor( tensor: torch.Tensor, sharding_info: _STShardingInfo ) -> torch.Tensor: result: torch.Tensor if sharding_info.sharding_spec is not None: assert sharding_info.global_size is not None result = ShardedTensor._init_from_local_tensor( tensor, _rewrite_spec_if_needed( sharding_info.sharding_spec, tensor, dist.get_rank(sharding_info.process_group), ), sharding_info.global_size, process_group=cast(dist.ProcessGroup, sharding_info.process_group), ) else: result = DistributedTensor.from_local( tensor, device_mesh=sharding_info.device_mesh, placements=sharding_info.placements, run_check=False, ) _set_fsdp_flattened(result) return result def _chunk_tensor( tensor: torch.Tensor, rank: int, world_size: int, num_devices_per_node: int, pg: dist.ProcessGroup, ) -> torch.Tensor: if type(tensor) is ShardedTensor: assert len(tensor.local_shards()) == 1 inner_param = tensor.local_tensor() inner_st = _create_chunk_sharded_tensor( inner_param, rank, world_size, num_devices_per_node, pg, ) outer_local_shard = tensor.local_shards()[0] shards: List[Shard] = [ Shard(inner_st, copy.deepcopy(outer_local_shard.metadata)) ] st_meta = copy.deepcopy(tensor.metadata()) st_meta.tensor_properties.requires_grad = False st_outer = ShardedTensor._init_from_local_shards_and_global_metadata( shards, sharded_tensor_metadata=st_meta, process_group=tensor._process_group, init_rrefs=False, ) return st_outer elif type(tensor) is DistributedTensor: device_mesh = tensor.device_mesh assert device_mesh.ndim == 1, "Only 1D DeviceMeshes currently handled" inner_param = tensor._local_tensor inner_st = _create_chunk_sharded_tensor( inner_param, rank, world_size, torch.cuda.device_count(), pg, ) dt_pg = _get_dt_pg(tensor) # We do this differently here, we create a ST with no local shards then patch it shards = [ Shard(inner_st, _create_shard_md_from_dt(tensor, dist.get_rank(dt_pg))) ] st_meta = _create_sharded_tensor_md_from_dt(tensor, dt_pg) st_meta.tensor_properties.requires_grad = False st_outer = ShardedTensor._init_from_local_shards_and_global_metadata( shards, sharded_tensor_metadata=st_meta, process_group=dt_pg, init_rrefs=False, ) return st_outer else: return _create_chunk_sharded_tensor( tensor, rank, world_size, num_devices_per_node, pg, ) def _pre_load_state_dict( tensor: torch.Tensor, ) -> Tuple[torch.Tensor, List[Shard]]: shards = cast(ShardedTensor, tensor).local_shards() if len(shards) == 1 and type(shards[0].tensor) is ShardedTensor: inner_tensor = shards[0].tensor shards = inner_tensor.local_shards() # pyre-ignore[16] tensor = inner_tensor return (tensor, shards if len(shards) > 0 else [])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources