Welcome to the TorchRec documentation!¶
TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs.
For installation instructions, visit
https://github.com/pytorch/torchrec#readme
Tutorial¶
In this tutorial, we introduce the primary torchRec API called DistributedModelParallel, or DMP. Like pytorch’s DistributedDataParallel, DMP wraps a model to enable distributed training.
Open in Google Colab
TorchRec API¶
- torchrec.datasets
- torchrec.datasets.scripts
- torchrec.distributed
- torchrec.distributed.collective_utils
- torchrec.distributed.comm
- torchrec.distributed.comm_ops
- torchrec.distributed.dist_data
- torchrec.distributed.embedding
- torchrec.distributed.embedding_lookup
- torchrec.distributed.embedding_sharding
- torchrec.distributed.embedding_types
- torchrec.distributed.embeddingbag
- torchrec.distributed.grouped_position_weighted
- torchrec.distributed.model_parallel
- torchrec.distributed.quant_embeddingbag
- torchrec.distributed.train_pipeline
- torchrec.distributed.types
- torchrec.distributed.utils
- torchrec.distributed.mc_modules
- torchrec.distributed.mc_embeddingbag
- torchrec.distributed.mc_embedding
- torchrec.distributed.planner
- torchrec.distributed.planner.constants
- torchrec.distributed.planner.enumerators
- torchrec.distributed.planner.partitioners
- torchrec.distributed.planner.perf_models
- torchrec.distributed.planner.planners
- torchrec.distributed.planner.proposers
- torchrec.distributed.planner.shard_estimators
- torchrec.distributed.planner.stats
- torchrec.distributed.planner.storage_reservations
- torchrec.distributed.planner.types
- torchrec.distributed.planner.utils
- torchrec.distributed.sharding
- torchrec.fx
- torchrec.inference
- torchrec.models
- torchrec.modules
- torchrec.modules.activation
- torchrec.modules.crossnet
- torchrec.modules.deepfm
- torchrec.modules.embedding_configs
- torchrec.modules.embedding_modules
- torchrec.modules.feature_processor
- torchrec.modules.lazy_extension
- torchrec.modules.mlp
- torchrec.modules.utils
- torchrec.modules.mc_modules
- torchrec.modules.mc_embedding_modules
- torchrec.optim
- torchrec.quant
- torchrec.sparse