Shortcuts

Quick Start

Option 1: torch.compile

You can use Torch-TensorRT anywhere you use torch.compile:

import torch
import torch_tensorrt

model = MyModel().eval().cuda() # define your model here
x = torch.randn((1, 3, 224, 224)).cuda() # define what the inputs to the model will look like

optimized_model = torch.compile(model, backend="tensorrt")
optimized_model(x) # compiled on first run

optimized_model(x) # this will be fast!

Option 2: Export

If you want to optimize your model ahead-of-time and/or deploy in a C++ environment, Torch-TensorRT provides an export-style workflow that serializes an optimized module. This module can be deployed in PyTorch or with libtorch (i.e. without a Python dependency).

Step 1: Optimize + serialize

import torch
import torch_tensorrt

model = MyModel().eval().cuda() # define your model here
inputs = [torch.randn((1, 3, 224, 224)).cuda()] # define a list of representative inputs here

trt_gm = torch_tensorrt.compile(model, ir="dynamo", inputs)
torch_tensorrt.save(trt_gm, "trt.ep", inputs=inputs) # PyTorch only supports Python runtime for an ExportedProgram. For C++ deployment, use a TorchScript file
torch_tensorrt.save(trt_gm, "trt.ts", output_format="torchscript", inputs=inputs)

Step 2: Deploy

Deployment in Python:

import torch
import torch_tensorrt

inputs = [torch.randn((1, 3, 224, 224)).cuda()] # your inputs go here

# You can run this in a new python session!
model = torch.export.load("trt.ep").module()
# model = torch_tensorrt.load("trt.ep").module() # this also works
model(*inputs)

Deployment in C++:

#include "torch/script.h"
#include "torch_tensorrt/torch_tensorrt.h"

auto trt_mod = torch::jit::load("trt.ts");
auto input_tensor = [...]; // fill this with your inputs
auto results = trt_mod.forward({input_tensor});

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources