torch.cuda.jiterator._create_jit_fn¶
- torch.cuda.jiterator._create_jit_fn(code_string, **kwargs)[source]¶
Create a jiterator-generated cuda kernel for an elementwise op.
The code string has to be a valid CUDA function that describes the computation for a single element. The code string has to follow the c++ template pattern, as shown in the example below. This function will be inlined into elementwise kernel template, and compiled on the fly. Compiled kernel will be cached in memory, as well as local temp dir.
Jiterator-generated kernels accepts noncontiguous tensors, and supports broadcasting and type promotion.
- Parameters:
code_string (str) – CUDA code string to be compiled by jiterator. The entry functor must return by value.
kwargs (Dict, optional) – Keyword arguments for generated function
- Return type:
Example:
code_string = "template <typename T> T my_kernel(T x, T y, T alpha) { return -x + alpha * y; }" jitted_fn = create_jit_fn(code_string, alpha=1.0) a = torch.rand(3, device='cuda') b = torch.rand(3, device='cuda') # invoke jitted function like a regular python function result = jitted_fn(a, b, alpha=3.14)
code_string also allows multiple function definitions, and the last function will be treated as the entry function.
Example:
code_string = "template <typename T> T util_fn(T x, T y) { return ::sin(x) + ::cos(y); }" code_string += "template <typename T> T my_kernel(T x, T y, T val) { return ::min(val, util_fn(x, y)); }" jitted_fn = create_jit_fn(code_string, val=0.0) a = torch.rand(3, device='cuda') b = torch.rand(3, device='cuda') # invoke jitted function like a regular python function result = jitted_fn(a, b) # using default val=0.0
Jiterator can be used together with python registration to override an operator’s cuda kernel. Following example is overriding gelu’s cuda kernel with relu.
Example:
code_string = "template <typename T> T my_gelu(T a) { return a > 0 ? a : 0; }" my_gelu = create_jit_fn(code_string) my_lib = torch.library.Library("aten", "IMPL") my_lib.impl('aten::gelu', my_gelu, "CUDA") # torch.nn.GELU and torch.nn.function.gelu are now overridden a = torch.rand(3, device='cuda') torch.allclose(torch.nn.functional.gelu(a), torch.nn.functional.relu(a))
Warning
This API is in beta and may change in future releases.
Warning
This API only supports up to 8 inputs and 1 output
Warning
All input tensors must live in CUDA device