Shortcuts

TransformerDecoder

class torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None)[source]

TransformerDecoder is a stack of N decoder layers

Parameters:
  • decoder_layer – an instance of the TransformerDecoderLayer() class (required).

  • num_layers – the number of sub-decoder-layers in the decoder (required).

  • norm – the layer normalization component (optional).

Examples::
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = transformer_decoder(tgt, memory)
forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, tgt_is_causal=False, memory_is_causal=False)[source]

Pass the inputs (and mask) through the decoder layer in turn.

Parameters:
  • tgt (Tensor) – the sequence to the decoder (required).

  • memory (Tensor) – the sequence from the last layer of the encoder (required).

  • tgt_mask (Optional[Tensor]) – the mask for the tgt sequence (optional).

  • memory_mask (Optional[Tensor]) – the mask for the memory sequence (optional).

  • tgt_key_padding_mask (Optional[Tensor]) – the mask for the tgt keys per batch (optional).

  • memory_key_padding_mask (Optional[Tensor]) – the mask for the memory keys per batch (optional).

  • tgt_is_causal (bool) – If specified, applies a causal mask as tgt mask. Mutually exclusive with providing tgt_mask. Default: False.

  • memory_is_causal (bool) – If specified, applies a causal mask as memory mask. Mutually exclusive with providing memory_mask. Default: False.

Return type:

Tensor

Shape:

see the docs in Transformer class.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources