SGD¶
- class torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False, *, maximize=False, foreach=None, differentiable=False)[source]¶
Implements stochastic gradient descent (optionally with momentum).
Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.
- Parameters:
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
lr (float) – learning rate
momentum (float, optional) – momentum factor (default: 0)
weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
dampening (float, optional) – dampening for momentum (default: 0)
nesterov (bool, optional) – enables Nesterov momentum (default: False)
maximize (bool, optional) – maximize the params based on the objective, instead of minimizing (default: False)
foreach (bool, optional) – whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. (default: None)
differentiable (bool, optional) – whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don’t intend to run autograd through this instance (default: False)
Example
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step()
Note
The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
where , , and denote the parameters, gradient, velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form
The Nesterov version is analogously modified.
Moreover, the initial value of the momentum buffer is set to the gradient value at the first step. This is in contrast to some other frameworks that initialize it to all zeros.
- add_param_group(param_group)¶
Add a param group to the
Optimizer
s param_groups.This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the
Optimizer
as training progresses.- Parameters:
param_group (dict) – Specifies what Tensors should be optimized along with group specific optimization options.
- load_state_dict(state_dict)¶
Loads the optimizer state.
- Parameters:
state_dict (dict) – optimizer state. Should be an object returned from a call to
state_dict()
.
- register_step_post_hook(hook)¶
Register an optimizer step post hook which will be called after optimizer step. It should have the following signature:
hook(optimizer, args, kwargs) -> None
The
optimizer
argument is the optimizer instance being used.- Parameters:
hook (Callable) – The user defined hook to be registered.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemoveableHandle
- register_step_pre_hook(hook)¶
Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature:
hook(optimizer, args, kwargs) -> None or modified args and kwargs
The
optimizer
argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs.- Parameters:
hook (Callable) – The user defined hook to be registered.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemoveableHandle
- state_dict()¶
Returns the state of the optimizer as a
dict
.It contains two entries:
- state - a dict holding current optimization state. Its content
differs between optimizer classes.
- param_groups - a list containing all parameter groups where each
parameter group is a dict
- zero_grad(set_to_none=True)¶
Resets the gradients of all optimized
torch.Tensor
s.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests
zero_grad(set_to_none=True)
followed by a backward pass,.grad
s are guaranteed to be None for params that did not receive a gradient. 3.torch.optim
optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).