SparseAdam¶
- class torch.optim.SparseAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, maximize=False)[source]¶
Implements lazy version of Adam algorithm suitable for sparse tensors.
In this variant, only moments that show up in the gradient get updated, and only those portions of the gradient get applied to the parameters.
- Parameters:
params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) – learning rate (default: 1e-3)
betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
maximize (bool, optional) – maximize the params based on the objective, instead of minimizing (default: False)
- add_param_group(param_group)¶
Add a param group to the
Optimizer
s param_groups.This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the
Optimizer
as training progresses.- Parameters:
param_group (dict) – Specifies what Tensors should be optimized along with group specific optimization options.
- load_state_dict(state_dict)¶
Loads the optimizer state.
- Parameters:
state_dict (dict) – optimizer state. Should be an object returned from a call to
state_dict()
.
- register_step_post_hook(hook)¶
Register an optimizer step post hook which will be called after optimizer step. It should have the following signature:
hook(optimizer, args, kwargs) -> None
The
optimizer
argument is the optimizer instance being used.- Parameters:
hook (Callable) – The user defined hook to be registered.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemoveableHandle
- register_step_pre_hook(hook)¶
Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature:
hook(optimizer, args, kwargs) -> None or modified args and kwargs
The
optimizer
argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs.- Parameters:
hook (Callable) – The user defined hook to be registered.
- Returns:
a handle that can be used to remove the added hook by calling
handle.remove()
- Return type:
torch.utils.hooks.RemoveableHandle
- state_dict()¶
Returns the state of the optimizer as a
dict
.It contains two entries:
- state - a dict holding current optimization state. Its content
differs between optimizer classes.
- param_groups - a list containing all parameter groups where each
parameter group is a dict
- step(closure=None)[source]¶
Performs a single optimization step.
- Parameters:
closure (Callable, optional) – A closure that reevaluates the model and returns the loss.
- zero_grad(set_to_none=True)¶
Resets the gradients of all optimized
torch.Tensor
s.- Parameters:
set_to_none (bool) – instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests
zero_grad(set_to_none=True)
followed by a backward pass,.grad
s are guaranteed to be None for params that did not receive a gradient. 3.torch.optim
optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).