Note
Go to the end to download the full example code
Compiling ResNet using the Torch-TensorRT torch.compile Backend¶
This interactive script is intended as a sample of the Torch-TensorRT workflow with torch.compile on a ResNet model.
Imports and Model Definition¶
import torch
import torch_tensorrt
import torchvision.models as models
# Initialize model with half precision and sample inputs
model = models.resnet18(pretrained=True).half().eval().to("cuda")
inputs = [torch.randn((1, 3, 224, 224)).to("cuda").half()]
Optional Input Arguments to torch_tensorrt.compile¶
# Enabled precision for TensorRT optimization
enabled_precisions = {torch.half}
# Whether to print verbose logs
debug = True
# Workspace size for TensorRT
workspace_size = 20 << 30
# Maximum number of TRT Engines
# (Lower value allows more graph segmentation)
min_block_size = 7
# Operations to Run in Torch, regardless of converter support
torch_executed_ops = {}
Compilation with torch_tensorrt.compile¶
# Build and compile the model with torch.compile, using Torch-TensorRT backend
optimized_model = torch_tensorrt.compile(
model,
ir="torch_compile",
inputs=inputs,
enabled_precisions=enabled_precisions,
debug=debug,
workspace_size=workspace_size,
min_block_size=min_block_size,
torch_executed_ops=torch_executed_ops,
)
Equivalently, we could have run the above via the torch.compile frontend, as so: optimized_model = torch.compile(model, backend=”torch_tensorrt”, options={“enabled_precisions”: enabled_precisions, …}); optimized_model(*inputs)
Inference¶
# Does not cause recompilation (same batch size as input)
new_inputs = [torch.randn((1, 3, 224, 224)).half().to("cuda")]
new_outputs = optimized_model(*new_inputs)
# Does cause recompilation (new batch size)
new_batch_size_inputs = [torch.randn((8, 3, 224, 224)).half().to("cuda")]
new_batch_size_outputs = optimized_model(*new_batch_size_inputs)
Avoid recompilation by specifying dynamic shapes before Torch-TRT compilation¶
# The following code illustrates the workflow using ir=torch_compile (which uses torch.compile under the hood)
inputs_bs8 = torch.randn((8, 3, 224, 224)).half().to("cuda")
# This indicates dimension 0 of inputs_bs8 is dynamic whose range of values is [2, 16]
torch._dynamo.mark_dynamic(inputs_bs8, 0, min=2, max=16)
optimized_model = torch_tensorrt.compile(
model,
ir="torch_compile",
inputs=inputs_bs8,
enabled_precisions=enabled_precisions,
debug=debug,
workspace_size=workspace_size,
min_block_size=min_block_size,
torch_executed_ops=torch_executed_ops,
)
outputs_bs8 = optimized_model(inputs_bs8)
# No recompilation happens for batch size = 12
inputs_bs12 = torch.randn((12, 3, 224, 224)).half().to("cuda")
outputs_bs12 = optimized_model(inputs_bs12)
# The following code illustrates the workflow using ir=dynamo (which uses torch.export APIs under the hood)
# dynamic shapes for any inputs are specified using torch_tensorrt.Input API
compile_spec = {
"inputs": [
torch_tensorrt.Input(
min_shape=(1, 3, 224, 224),
opt_shape=(8, 3, 224, 224),
max_shape=(16, 3, 224, 224),
dtype=torch.half,
)
],
"enabled_precisions": enabled_precisions,
"ir": "dynamo",
}
trt_model = torch_tensorrt.compile(model, **compile_spec)
# No recompilation happens for batch size = 12
inputs_bs12 = torch.randn((12, 3, 224, 224)).half().to("cuda")
outputs_bs12 = trt_model(inputs_bs12)
Total running time of the script: ( 0 minutes 0.000 seconds)