Note
Click here to download the full example code
TorchVision Object Detection Finetuning Tutorial¶
For this tutorial, we will be finetuning a pre-trained Mask R-CNN model on the Penn-Fudan Database for Pedestrian Detection and Segmentation. It contains 170 images with 345 instances of pedestrians, and we will use it to illustrate how to use the new features in torchvision in order to train an object detection and instance segmentation model on a custom dataset.
Note
This tutorial works only with torchvision version >=0.16 or nightly. If you’re using torchvision<=0.15, please follow this tutorial instead.
Defining the Dataset¶
The reference scripts for training object detection, instance
segmentation and person keypoint detection allows for easily supporting
adding new custom datasets. The dataset should inherit from the standard
torch.utils.data.Dataset
class, and implement __len__
and
__getitem__
.
The only specificity that we require is that the dataset __getitem__
should return a tuple:
image:
torchvision.tv_tensors.Image
of shape[3, H, W]
, a pure tensor, or a PIL Image of size(H, W)
target: a dict containing the following fields
boxes
,torchvision.tv_tensors.BoundingBoxes
of shape[N, 4]
: the coordinates of theN
bounding boxes in[x0, y0, x1, y1]
format, ranging from0
toW
and0
toH
labels
, integertorch.Tensor
of shape[N]
: the label for each bounding box.0
represents always the background class.image_id
, int: an image identifier. It should be unique between all the images in the dataset, and is used during evaluationarea
, floattorch.Tensor
of shape[N]
: the area of the bounding box. This is used during evaluation with the COCO metric, to separate the metric scores between small, medium and large boxes.iscrowd
, uint8torch.Tensor
of shape[N]
: instances withiscrowd=True
will be ignored during evaluation.(optionally)
masks
,torchvision.tv_tensors.Mask
of shape[N, H, W]
: the segmentation masks for each one of the objects
If your dataset is compliant with above requirements then it will work for both
training and evaluation codes from the reference script. Evaluation code will use scripts from
pycocotools
which can be installed with pip install pycocotools
.
Note
For Windows, please install pycocotools
from gautamchitnis with command
pip install git+https://github.com/gautamchitnis/cocoapi.git@cocodataset-master#subdirectory=PythonAPI
One note on the labels
. The model considers class 0
as background. If your dataset does not contain the background class,
you should not have 0
in your labels
. For example, assuming you have just two classes, cat and dog, you can
define 1
(not 0
) to represent cats and 2
to represent dogs. So, for instance, if one of the images has both
classes, your labels
tensor should look like [1, 2]
.
Additionally, if you want to use aspect ratio grouping during training
(so that each batch only contains images with similar aspect ratios),
then it is recommended to also implement a get_height_and_width
method, which returns the height and the width of the image. If this
method is not provided, we query all elements of the dataset via
__getitem__
, which loads the image in memory and is slower than if
a custom method is provided.
Writing a custom dataset for PennFudan¶
Let’s write a dataset for the PennFudan dataset. First, let’s download the dataset and extract the zip file:
wget https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip -P data
cd data && unzip PennFudanPed.zip
We have the following folder structure:
PennFudanPed/
PedMasks/
FudanPed00001_mask.png
FudanPed00002_mask.png
FudanPed00003_mask.png
FudanPed00004_mask.png
...
PNGImages/
FudanPed00001.png
FudanPed00002.png
FudanPed00003.png
FudanPed00004.png
Here is one example of a pair of images and segmentation masks
import matplotlib.pyplot as plt
from torchvision.io import read_image
image = read_image("data/PennFudanPed/PNGImages/FudanPed00046.png")
mask = read_image("data/PennFudanPed/PedMasks/FudanPed00046_mask.png")
plt.figure(figsize=(16, 8))
plt.subplot(121)
plt.title("Image")
plt.imshow(image.permute(1, 2, 0))
plt.subplot(122)
plt.title("Mask")
plt.imshow(mask.permute(1, 2, 0))
<matplotlib.image.AxesImage object at 0x7f8258082260>
So each image has a corresponding
segmentation mask, where each color correspond to a different instance.
Let’s write a torch.utils.data.Dataset
class for this dataset.
In the code below, we are wrapping images, bounding boxes and masks into
torchvision.tv_tensors.TVTensor
classes so that we will be able to apply torchvision
built-in transformations (new Transforms API)
for the given object detection and segmentation task.
Namely, image tensors will be wrapped by torchvision.tv_tensors.Image
, bounding boxes into
torchvision.tv_tensors.BoundingBoxes
and masks into torchvision.tv_tensors.Mask
.
As torchvision.tv_tensors.TVTensor
are torch.Tensor
subclasses, wrapped objects are also tensors and inherit the plain
torch.Tensor
API. For more information about torchvision tv_tensors
see
this documentation.
import os
import torch
from torchvision.io import read_image
from torchvision.ops.boxes import masks_to_boxes
from torchvision import tv_tensors
from torchvision.transforms.v2 import functional as F
class PennFudanDataset(torch.utils.data.Dataset):
def __init__(self, root, transforms):
self.root = root
self.transforms = transforms
# load all image files, sorting them to
# ensure that they are aligned
self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))
def __getitem__(self, idx):
# load images and masks
img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
img = read_image(img_path)
mask = read_image(mask_path)
# instances are encoded as different colors
obj_ids = torch.unique(mask)
# first id is the background, so remove it
obj_ids = obj_ids[1:]
num_objs = len(obj_ids)
# split the color-encoded mask into a set
# of binary masks
masks = (mask == obj_ids[:, None, None]).to(dtype=torch.uint8)
# get bounding box coordinates for each mask
boxes = masks_to_boxes(masks)
# there is only one class
labels = torch.ones((num_objs,), dtype=torch.int64)
image_id = idx
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
# suppose all instances are not crowd
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
# Wrap sample and targets into torchvision tv_tensors:
img = tv_tensors.Image(img)
target = {}
target["boxes"] = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=F.get_size(img))
target["masks"] = tv_tensors.Mask(masks)
target["labels"] = labels
target["image_id"] = image_id
target["area"] = area
target["iscrowd"] = iscrowd
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.imgs)
That’s all for the dataset. Now let’s define a model that can perform predictions on this dataset.
Defining your model¶
In this tutorial, we will be using Mask R-CNN, which is based on top of Faster R-CNN. Faster R-CNN is a model that predicts both bounding boxes and class scores for potential objects in the image.
Mask R-CNN adds an extra branch into Faster R-CNN, which also predicts segmentation masks for each instance.
There are two common situations where one might want to modify one of the available models in TorchVision Model Zoo. The first is when we want to start from a pre-trained model, and just finetune the last layer. The other is when we want to replace the backbone of the model with a different one (for faster predictions, for example).
Let’s go see how we would do one or another in the following sections.
1 - Finetuning from a pretrained model¶
Let’s suppose that you want to start from a model pre-trained on COCO and want to finetune it for your particular classes. Here is a possible way of doing it:
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
# load a model pre-trained on COCO
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights="DEFAULT")
# replace the classifier with a new one, that has
# num_classes which is user-defined
num_classes = 2 # 1 class (person) + background
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
Downloading: "https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth
0%| | 0.00/160M [00:00<?, ?B/s]
19%|#8 | 29.8M/160M [00:00<00:00, 312MB/s]
37%|###7 | 59.5M/160M [00:00<00:00, 263MB/s]
59%|#####9 | 95.0M/160M [00:00<00:00, 308MB/s]
78%|#######8 | 125M/160M [00:00<00:00, 306MB/s]
97%|#########6| 155M/160M [00:00<00:00, 282MB/s]
100%|##########| 160M/160M [00:00<00:00, 286MB/s]
2 - Modifying the model to add a different backbone¶
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
# load a pre-trained model for classification and return
# only the features
backbone = torchvision.models.mobilenet_v2(weights="DEFAULT").features
# ``FasterRCNN`` needs to know the number of
# output channels in a backbone. For mobilenet_v2, it's 1280
# so we need to add it here
backbone.out_channels = 1280
# let's make the RPN generate 5 x 3 anchors per spatial
# location, with 5 different sizes and 3 different aspect
# ratios. We have a Tuple[Tuple[int]] because each feature
# map could potentially have different sizes and
# aspect ratios
anchor_generator = AnchorGenerator(
sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),)
)
# let's define what are the feature maps that we will
# use to perform the region of interest cropping, as well as
# the size of the crop after rescaling.
# if your backbone returns a Tensor, featmap_names is expected to
# be [0]. More generally, the backbone should return an
# ``OrderedDict[Tensor]``, and in ``featmap_names`` you can choose which
# feature maps to use.
roi_pooler = torchvision.ops.MultiScaleRoIAlign(
featmap_names=['0'],
output_size=7,
sampling_ratio=2
)
# put the pieces together inside a Faster-RCNN model
model = FasterRCNN(
backbone,
num_classes=2,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler
)
Downloading: "https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/mobilenet_v2-7ebf99e0.pth
0%| | 0.00/13.6M [00:00<?, ?B/s]
81%|######## | 11.0M/13.6M [00:00<00:00, 115MB/s]
100%|##########| 13.6M/13.6M [00:00<00:00, 110MB/s]
Object detection and instance segmentation model for PennFudan Dataset¶
In our case, we want to finetune from a pre-trained model, given that our dataset is very small, so we will be following approach number 1.
Here we want to also compute the instance segmentation masks, so we will be using Mask R-CNN:
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
def get_model_instance_segmentation(num_classes):
# load an instance segmentation model pre-trained on COCO
model = torchvision.models.detection.maskrcnn_resnet50_fpn(weights="DEFAULT")
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# now get the number of input features for the mask classifier
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
# and replace the mask predictor with a new one
model.roi_heads.mask_predictor = MaskRCNNPredictor(
in_features_mask,
hidden_layer,
num_classes
)
return model
That’s it, this will make model
be ready to be trained and evaluated
on your custom dataset.
Putting everything together¶
In references/detection/
, we have a number of helper functions to
simplify training and evaluating detection models. Here, we will use
references/detection/engine.py
and references/detection/utils.py
.
Just download everything under references/detection
to your folder and use them here.
On Linux if you have wget
, you can download them using below commands:
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/engine.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/utils.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/coco_utils.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/coco_eval.py")
os.system("wget https://raw.githubusercontent.com/pytorch/vision/main/references/detection/transforms.py")
0
Since v0.15.0 torchvision provides new Transforms API to easily write data augmentation pipelines for Object Detection and Segmentation tasks.
Let’s write some helper functions for data augmentation / transformation:
from torchvision.transforms import v2 as T
def get_transform(train):
transforms = []
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
transforms.append(T.ToDtype(torch.float, scale=True))
transforms.append(T.ToPureTensor())
return T.Compose(transforms)
Testing forward()
method (Optional)¶
Before iterating over the dataset, it’s good to see what the model expects during training and inference time on sample data.
import utils
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights="DEFAULT")
dataset = PennFudanDataset('data/PennFudanPed', get_transform(train=True))
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=2,
shuffle=True,
collate_fn=utils.collate_fn
)
# For Training
images, targets = next(iter(data_loader))
images = list(image for image in images)
targets = [{k: v for k, v in t.items()} for t in targets]
output = model(images, targets) # Returns losses and detections
print(output)
# For inference
model.eval()
x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
predictions = model(x) # Returns predictions
print(predictions[0])
{'loss_classifier': tensor(0.0798, grad_fn=<NllLossBackward0>), 'loss_box_reg': tensor(0.0284, grad_fn=<DivBackward0>), 'loss_objectness': tensor(0.0186, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>), 'loss_rpn_box_reg': tensor(0.0034, grad_fn=<DivBackward0>)}
{'boxes': tensor([], size=(0, 4), grad_fn=<StackBackward0>), 'labels': tensor([], dtype=torch.int64), 'scores': tensor([], grad_fn=<IndexBackward0>)}
Let’s now write the main function which performs the training and the validation:
from engine import train_one_epoch, evaluate
# train on the GPU or on the CPU, if a GPU is not available
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# our dataset has two classes only - background and person
num_classes = 2
# use our dataset and defined transformations
dataset = PennFudanDataset('data/PennFudanPed', get_transform(train=True))
dataset_test = PennFudanDataset('data/PennFudanPed', get_transform(train=False))
# split the dataset in train and test set
indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-50])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])
# define training and validation data loaders
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=2,
shuffle=True,
collate_fn=utils.collate_fn
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=1,
shuffle=False,
collate_fn=utils.collate_fn
)
# get the model using our helper function
model = get_model_instance_segmentation(num_classes)
# move model to the right device
model.to(device)
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params,
lr=0.005,
momentum=0.9,
weight_decay=0.0005
)
# and a learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size=3,
gamma=0.1
)
# let's train it just for 2 epochs
num_epochs = 2
for epoch in range(num_epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
evaluate(model, data_loader_test, device=device)
print("That's it!")
Downloading: "https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth
0%| | 0.00/170M [00:00<?, ?B/s]
20%|#9 | 33.8M/170M [00:00<00:00, 353MB/s]
41%|#### | 69.0M/170M [00:00<00:00, 362MB/s]
61%|######1 | 104M/170M [00:00<00:00, 319MB/s]
79%|#######9 | 135M/170M [00:00<00:00, 295MB/s]
100%|#########9| 169M/170M [00:00<00:00, 316MB/s]
100%|##########| 170M/170M [00:00<00:00, 318MB/s]
/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/conv.py:456: UserWarning:
Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
Epoch: [0] [ 0/60] eta: 0:00:27 lr: 0.000090 loss: 4.9131 (4.9131) loss_classifier: 0.4438 (0.4438) loss_box_reg: 0.1060 (0.1060) loss_mask: 4.3589 (4.3589) loss_objectness: 0.0021 (0.0021) loss_rpn_box_reg: 0.0023 (0.0023) time: 0.4657 data: 0.0137 max mem: 2423
/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning:
Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
Epoch: [0] [10/60] eta: 0:00:15 lr: 0.000936 loss: 1.7940 (2.7741) loss_classifier: 0.4158 (0.3554) loss_box_reg: 0.3087 (0.2540) loss_mask: 0.9491 (2.1313) loss_objectness: 0.0227 (0.0266) loss_rpn_box_reg: 0.0056 (0.0069) time: 0.3014 data: 0.0156 max mem: 2919
Epoch: [0] [20/60] eta: 0:00:10 lr: 0.001783 loss: 0.7881 (1.7885) loss_classifier: 0.2120 (0.2675) loss_box_reg: 0.2015 (0.2331) loss_mask: 0.3993 (1.2586) loss_objectness: 0.0162 (0.0214) loss_rpn_box_reg: 0.0076 (0.0079) time: 0.2632 data: 0.0157 max mem: 2922
Epoch: [0] [30/60] eta: 0:00:07 lr: 0.002629 loss: 0.6771 (1.4252) loss_classifier: 0.1439 (0.2249) loss_box_reg: 0.2255 (0.2432) loss_mask: 0.2584 (0.9276) loss_objectness: 0.0123 (0.0196) loss_rpn_box_reg: 0.0101 (0.0098) time: 0.2434 data: 0.0164 max mem: 2923
Epoch: [0] [40/60] eta: 0:00:05 lr: 0.003476 loss: 0.5679 (1.2061) loss_classifier: 0.0946 (0.1903) loss_box_reg: 0.2452 (0.2359) loss_mask: 0.2280 (0.7540) loss_objectness: 0.0075 (0.0162) loss_rpn_box_reg: 0.0118 (0.0098) time: 0.2419 data: 0.0167 max mem: 2923
Epoch: [0] [50/60] eta: 0:00:02 lr: 0.004323 loss: 0.3685 (1.0404) loss_classifier: 0.0584 (0.1621) loss_box_reg: 0.1549 (0.2175) loss_mask: 0.1589 (0.6378) loss_objectness: 0.0027 (0.0136) loss_rpn_box_reg: 0.0073 (0.0092) time: 0.2282 data: 0.0160 max mem: 2923
Epoch: [0] [59/60] eta: 0:00:00 lr: 0.005000 loss: 0.3411 (0.9403) loss_classifier: 0.0399 (0.1441) loss_box_reg: 0.1228 (0.2044) loss_mask: 0.1589 (0.5711) loss_objectness: 0.0018 (0.0119) loss_rpn_box_reg: 0.0062 (0.0088) time: 0.2217 data: 0.0151 max mem: 2923
Epoch: [0] Total time: 0:00:14 (0.2468 s / it)
creating index...
index created!
Test: [ 0/50] eta: 0:00:07 model_time: 0.1297 (0.1297) evaluator_time: 0.0070 (0.0070) time: 0.1503 data: 0.0131 max mem: 2923
Test: [49/50] eta: 0:00:00 model_time: 0.0435 (0.0763) evaluator_time: 0.0048 (0.0069) time: 0.0739 data: 0.0103 max mem: 2923
Test: Total time: 0:00:04 (0.0951 s / it)
Averaged stats: model_time: 0.0435 (0.0763) evaluator_time: 0.0048 (0.0069)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.652
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.984
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.878
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.288
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.615
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.665
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.290
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.704
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.704
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.367
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.708
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.713
IoU metric: segm
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.671
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.972
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.790
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.446
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.503
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.687
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.296
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.723
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.728
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.633
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.658
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.738
Epoch: [1] [ 0/60] eta: 0:00:11 lr: 0.005000 loss: 0.2508 (0.2508) loss_classifier: 0.0209 (0.0209) loss_box_reg: 0.0604 (0.0604) loss_mask: 0.1655 (0.1655) loss_objectness: 0.0010 (0.0010) loss_rpn_box_reg: 0.0031 (0.0031) time: 0.1846 data: 0.0195 max mem: 2923
Epoch: [1] [10/60] eta: 0:00:11 lr: 0.005000 loss: 0.3492 (0.3722) loss_classifier: 0.0493 (0.0540) loss_box_reg: 0.1260 (0.1431) loss_mask: 0.1599 (0.1645) loss_objectness: 0.0016 (0.0024) loss_rpn_box_reg: 0.0085 (0.0081) time: 0.2395 data: 0.0171 max mem: 2923
Epoch: [1] [20/60] eta: 0:00:08 lr: 0.005000 loss: 0.3463 (0.3477) loss_classifier: 0.0441 (0.0454) loss_box_reg: 0.1197 (0.1186) loss_mask: 0.1698 (0.1744) loss_objectness: 0.0013 (0.0022) loss_rpn_box_reg: 0.0071 (0.0071) time: 0.2208 data: 0.0156 max mem: 2923
Epoch: [1] [30/60] eta: 0:00:06 lr: 0.005000 loss: 0.3181 (0.3294) loss_classifier: 0.0388 (0.0446) loss_box_reg: 0.0914 (0.1130) loss_mask: 0.1473 (0.1626) loss_objectness: 0.0015 (0.0022) loss_rpn_box_reg: 0.0050 (0.0070) time: 0.2076 data: 0.0155 max mem: 2923
Epoch: [1] [40/60] eta: 0:00:04 lr: 0.005000 loss: 0.2933 (0.3245) loss_classifier: 0.0433 (0.0439) loss_box_reg: 0.0914 (0.1075) loss_mask: 0.1433 (0.1637) loss_objectness: 0.0015 (0.0023) loss_rpn_box_reg: 0.0052 (0.0072) time: 0.2186 data: 0.0161 max mem: 2923
Epoch: [1] [50/60] eta: 0:00:02 lr: 0.005000 loss: 0.2763 (0.3131) loss_classifier: 0.0339 (0.0421) loss_box_reg: 0.0625 (0.1007) loss_mask: 0.1568 (0.1615) loss_objectness: 0.0011 (0.0021) loss_rpn_box_reg: 0.0042 (0.0066) time: 0.2263 data: 0.0151 max mem: 2923
Epoch: [1] [59/60] eta: 0:00:00 lr: 0.005000 loss: 0.2235 (0.2988) loss_classifier: 0.0327 (0.0408) loss_box_reg: 0.0538 (0.0941) loss_mask: 0.1269 (0.1556) loss_objectness: 0.0010 (0.0020) loss_rpn_box_reg: 0.0033 (0.0064) time: 0.2258 data: 0.0158 max mem: 2923
Epoch: [1] Total time: 0:00:13 (0.2203 s / it)
creating index...
index created!
Test: [ 0/50] eta: 0:00:02 model_time: 0.0409 (0.0409) evaluator_time: 0.0041 (0.0041) time: 0.0586 data: 0.0131 max mem: 2923
Test: [49/50] eta: 0:00:00 model_time: 0.0397 (0.0410) evaluator_time: 0.0031 (0.0043) time: 0.0557 data: 0.0104 max mem: 2923
Test: Total time: 0:00:02 (0.0571 s / it)
Averaged stats: model_time: 0.0397 (0.0410) evaluator_time: 0.0031 (0.0043)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.731
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.985
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.922
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.465
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.690
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.743
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.317
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.779
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.779
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.467
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.758
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.789
IoU metric: segm
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.722
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.978
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.890
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.351
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.573
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.741
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.317
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.763
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.765
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.683
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.781
That's it!
So after one epoch of training, we obtain a COCO-style mAP > 50, and a mask mAP of 65.
But what do the predictions look like? Let’s take one image in the dataset and verify
import matplotlib.pyplot as plt
from torchvision.utils import draw_bounding_boxes, draw_segmentation_masks
image = read_image("data/PennFudanPed/PNGImages/FudanPed00046.png")
eval_transform = get_transform(train=False)
model.eval()
with torch.no_grad():
x = eval_transform(image)
# convert RGBA -> RGB and move to device
x = x[:3, ...].to(device)
predictions = model([x, ])
pred = predictions[0]
image = (255.0 * (image - image.min()) / (image.max() - image.min())).to(torch.uint8)
image = image[:3, ...]
pred_labels = [f"pedestrian: {score:.3f}" for label, score in zip(pred["labels"], pred["scores"])]
pred_boxes = pred["boxes"].long()
output_image = draw_bounding_boxes(image, pred_boxes, pred_labels, colors="red")
masks = (pred["masks"] > 0.7).squeeze(1)
output_image = draw_segmentation_masks(output_image, masks, alpha=0.5, colors="blue")
plt.figure(figsize=(12, 12))
plt.imshow(output_image.permute(1, 2, 0))
<matplotlib.image.AxesImage object at 0x7f823da36b90>
The results look good!
Wrapping up¶
In this tutorial, you have learned how to create your own training
pipeline for object detection models on a custom dataset. For
that, you wrote a torch.utils.data.Dataset
class that returns the
images and the ground truth boxes and segmentation masks. You also
leveraged a Mask R-CNN model pre-trained on COCO train2017 in order to
perform transfer learning on this new dataset.
For a more complete example, which includes multi-machine / multi-GPU
training, check references/detection/train.py
, which is present in
the torchvision repository.
Total running time of the script: ( 0 minutes 49.667 seconds)